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• To receive full credit, answers must be legible, orderly, clear, and concise.
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Round A”.
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1 What is Game Theory?

Intuitively, all of us know what a game is, and know of examples of games. From video
games to tag to Tic-Tac-Toe, all games share common traits, such as a set of rules that
dictate how the game is played and different outcomes for players that help to determine
who “wins” and who “loses.”

Definition 1.1. For the rest of this round, we will define a game as formally having the
following components:

• Players who participate in the game.

• Rules that dictate what is allowed and when the game ends.

• Actions/Moves that the players undertake.

• Outcomes for each player when the game ends. Each player aims to achieve the best
possible outcome for themselves.

Remark 1.1. We will also assume that players never cheat in games (just like you should
never cheat on this round!), and unless otherwise specified, players always play optimally.

Example 1.1. In Tic-Tac-Toe, there are two players whose actions are placing either X’s
or O’s on a 3×3 grid. The rules are that the players alternate turns, and whoever connects 3
of their symbol in a row either horizontally, vertically, or diagonally first wins. The outcome
is either one playing winner and one losing, or the game resulting in a tie if the board is
filled without any 3 symbols in a row.

Problem 1: In each of the following activities, clearly state what the players, actions/moves,
and outcomes are. Note for some of these, there may not be one specific answer, so feel
free to include justifications.
(a) (2 points) Chess
(b) (2 points) Connect 4 (US Version) / Mahjong (ASDAN Version)
(c) (3 points) An auction
(d) (3 points) Symbiotic relationships (ex. clownfish and sea anemone)

(a) We were fairly lenient on grading. As long as the answer contained some mention
of the general rules of Chess (specific details were not required), the fact that
there are two players, and that games end in a win/draw/lose for each player, we
gave points.

(b) Again, we were fairly lenient on grading. As long as the answer contained some
mention of the general rules of Mahjong, the fact that up to 4 players can play,
and that games end in a winner, we gave points.

(c) There were many acceptable answers to this problem, we were just checking that
students gave a somewhat reasonable argument as to how an auction can be a
game.

One example of an acceptable answer was to say that the bidders were the players,
the rules were standard auction rules, and the outcomes were whether or not each
player won the auction.
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(d) Again, there were many acceptable answers to this problem.

One example of an acceptable answer was to say that the participants in the
relationship (ex. the clownfish and the sea anemone) were the players, the rules
were related to what each player did for the other(s), and the outcomes were
survival/death.
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2 Common Knowledge

Definition 2.1. For a group of actors, common knowledge of some information exists
when all actors know that information, all actors know that the other actors know that
information, all actors know that the other actors know that they themselves know that
information, etc.

Example 2.1. If two players are competing in a game of Chess, common knowledge en-
compasses everything that is currently on the board, including the current position of all
pieces in play, what pieces have been captured and are not in play, and which player’s turn
is next. Common knowledge does not emcompass each player’s strategy, as neither player
is guaranteed to know exactly what the other player plans on doing next.

Common knowledge is a key element of playing any game, as players often must consider
what other players know when evaluating what their best move is. The problem below is an
example of a situation in which the common knowledge is increasing as each player reveals
what they know.

Problem 2: Kevin chooses two numbers a and b from the integers between 1 and 6 inclusive,
such that a ≤ b. He then tells Bill only the product ab, and Jack only the sum a + b.
Note: for both parts, assume that both Jack and Bill are able to make perfect inferences
from each other’s statements. You do not need to justify your answers, just list the (a, b)
pairs.

(a) (2 points) If Bill says “I know what a and b are,” then how many possible values of
(a, b) exist?

(b) (8 points) Finally, for what pairs (a, b) would Bill and Jack have this conversation:

• Bill: I don’t know what a and b are.

• Jack: I also don’t know what a and b are.

• Bill: I now know what a and b are.

(a) 15 . If Bill immediately knows what a and b are, then it must be the case that
given the product ab, there is only one pair (a, b) that can produce the given
product. Below is a list of the 15 possible values of (a, b):

• (1, 1)

• (1, 2)

• (1, 3)

• (1, 5)

• (2, 4)

• (2, 5)

• (3, 3)

• (3, 5)

• (3, 6)

• (4, 4)

• (4, 5)

• (4, 6)

• (5, 5)

• (5, 6)

• (6, 6)
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(b) The only two answers are (1, 4), (3, 4) . First, we exclude all 15 possible (a, b)

pairs with a ≤ b mentioned in part a above. Thus, we are left with 6 possible
pairs, listed below.

• (1, 4)

• (1, 6)

• (2, 2)

• (2, 3)

• (2, 6)

• (3, 4)

Now, consider the pair (2, 6) from Jack’s perspective. Jack has the number 8, so
from the beginning, he knows that the possibilities for (a, b) are (2, 6), (3, 5), and
(4, 4). However, once Jack hears that Bill does not know what a and b are, Jack
can deduce that (3, 5) and (4, 4) are no longer possibilities, and thus the answer
must be (2, 6). However, since in the actual conversation Jack still does not know
what a and b are after Bill’s statement, (2, 6) is not a possible pair. A similar
argument can be made for (2, 2), which means we have 4 possibilities left.

• (1, 4)

• (1, 6)

• (2, 3)

• (3, 4)

Now suppose the pair was (1, 6). Bill would be told the number 6, so from his
perspective the possible values of a and b are (1, 6), and (2, 3), so he does not
know what a and b are immediately. From Jack’s perspective, the possible values
of a and b are (1, 6), (2, 5), and (3, 4). Since Bill does not immediately know what
a and b are, Jack can eliminate (2, 5) as a possibility, but Jack still doesn’t know
how to decide between (1, 6) and (3, 4), so he also still does not know what a and
b are.

Now Bill again considers the two possible options from his perspective: (1, 6) and
(2, 3). Unfortunately, Bill realizes that in both cases, Jack would not be able to
figure out a and b from his initial statement (i.e. Bill’s initial statement of “I
don’t know”), and so even after Jack’s reply, Bill still can’t distinguish between
these two possibilities. As a result, (1, 6) is not a possible answer.

Finally, suppose the pair was (1, 4). Bill would be told the number 4, so from
his perspective the possible values of a and b are (1, 4) and (2, 2), so he does not
know what a and b are immediately. From Jack’s perspective, the possible values
of a and b are (1, 4), and (2, 3). Jack can’t eliminate either of these options from
being Bill’s initial statement, so he also still does not know what a and b are.

Now, Bill does casework on (1, 4) and (2, 2). However, the difference here is that
if the answer was (2, 2), Jack WOULD FIGURE OUT that a and b are (2, 2),
because Jack would be able to eliminate (1, 3) from Bill’s first response. Thus,
Bill can successfully conclude that the answer is (1, 4).

Finally, if we repeat the logic above on (2, 3) and (3, 4), we find that (3, 4) is a
possible answer while (2, 3) is not.
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Problem 3: Triplets Albert, Brian, Clyde play a game where one of the three always tells
the truth, another always tells a lie, and the third randomly says either a truth or a lie.
All three know each other’s roles, and they now challenge you to also deduce the roles
of each. In the following situations, state the role of each person:

(a) (2 points) Albert says “I always lie”. Clyde says “Albert always tells the truth”.

(b) (3 points) Note that this problem was not on the ASDAN test. Brian says “Clyde
never tells the truth”. Albert responds “Brian’s statement is a lie”.

(c) (4 points) Note that this was problem (b) on the ASDAN test. Albert says “Brian
is the one who always says something random”. Clyde then says “Albert always lies”.
Finally, Brian then says “enough has been said to determine each role”.

(a) Albert is random, Brian always tells the truth, Clyde always lies . First, consider

Albert’s statement of “I always lie”. Given this statement, Albert cannot always
tell the truth (as then this statement would contradict the truth), and Albert
cannot always tell a lie (as then this statement would not be a lie). Thus, Albert
must be the random. Given this, we find that Clyde’s statement is a lie, and thus
Clyde must be the liar. Lastly, Brian must tell the truth because it is the only
role remaining.

(b) There were multiple possible answers for this problem. We accepted RTL, TLR,
RLT, TRL as roles for Albert, Brian, and Clyde respectively, where R represents
random, T represents truth teller, and L represents liar. Refer to solution tech-
nique described in part (c) below for examples on how to get to these solutions.

(c) Albert always tells the truth, Brian is random, Clyde always lies . This problem

is a bit trickier than part a, so let us consider all 3 × 2 × 1 = 6 possible ways
the roles can be distributed among Albert, Brian, and Clyde. Given Albert’s
statement, it is not possible for Albert to be the truth teller and Brian to be the
liar, and it is not possible for Albert to be the liar and Brian to be random. Thus,
after Albert’s statement, there are 6 − 2 = 4 possibilities left for roles:

• Albert always tells the truth, Brian is random, and Clyde always lies.

• Albert always lies, Brian always tells the truth, and Clyde is random.

• Albert is random, Brian always tells the truth, and Clyde always lies.

Next, we analyze Clyde’s statement that “Albert always lies”. Among the four
remaining possibilities above, we can remove the case where Albert is random
and Clyde always tells the truth, because Clyde’s statement would be a lie. Thus
we now have 3 remaining possibilities for roles. Finally, if we look at Brian’s
statement that “enough has been said to determine each role”, we find that this
statement cannot be the truth because we in fact do not have enough information
yet to determine each role. Thus, we can remove the two remaining role assign-
ments in which Brian tells the truth. At this point, there is only one possibility
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left, which is the one where Albert always tells the truth, Brian is random, and
Clyde always lies.

Lastly, note that on the US test, we also accepted RLT as an answer due to unclear
wording in the original problem.

3 Nash Equilibrium

Golden Balls is a game show where two contestants compete for some amount of money, say
$100, 000. Both contestants must choose to either “steal” or “split.” If both choose to split,
then both will walk away with half the money, or $50, 000 each. However, if one contestant
chooses “steal” while the other chooses to “split,” the contestant that chose “steal” will
take the entire $100, 000. Lastly, if both contestants choose to steal, then neither will get
anything.

If we were a contestant on Golden Balls, what would our best move be? Clearly, we want to
consider what actions our opponent can take, but due to common knowledge, we also know
that our opponent is considering the move we take. As a result, is one option definitively
better than the other?

Definition 3.1. In a game, the Nash Equilibrium is the situation in which all players
make a best possible action considering the actions of other players, and thus no player has
any incentive to change their action.

Example 3.1. In Golden Balls, it may be surprising to see that the Nash Equilibrium occurs
when both players choose to “steal,” even though this clearly results in a worse outcome
than if both players chose to “split.” This is because once both players choose to “steal,”
neither has anything to gain from switching, since if either instead chooses “split” but their
opponent chooses “steal,” they still gain nothing. On the other hand, both players choosing
to “split” is NOT a Nash Equilibrium because either player can improve their outcome by
instead choosing to “steal.” Another way to interpret this equilibrium is to only consider one
participant’s perspective, say Benny. From Benny’s point of view, if Alan decides to “split,”
then it is better if he (Benny) chooses to “steal.” If Alan decides to “steal,” it doesn’t matter
what he (Benny) picks. Regardless of Alan’s decision, “steal” is a best choice for Benny,
but “split” is not. Alan goes through this same logic, both players will settle on “steal.”

Definition 3.2. A payoff matrix is a table that shows the possible actions that all players
can make, as well as the payoffs associated with each one. These matrices are often used to
visualize where Nash Equilibria lie.

Example 3.2. Below is an example of a payoff matrix for two contestants, Alan and Benny,
who are competing in Golden Balls.
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Problem 4: (3 points) Jenny and Raina are trying to decide on what to do this weekend.
Jenny prefers watching movies while Raina prefers playing video games. However, since
Jenny and Raina are friends, they also prefer to do something together rather than doing
do different activities separately. Below is the payoff matrix for Jenny and Raina in this
situation, where the numbers represent the happiness levels of Jenny and Raina in each
situation. Are there any Nash Equilibria in this problem? If so, describe them and
justify why they are indeed equilibria. If not, explain why no equilibria exist.

Two Nash Equilibria: both girls playing video games, and both girls watching movies .

First consider the equilibria when both Jenny & Raina play video games. From Jenny’s
perspective, there is no reason to switch to watching movies (even though Jenny prefers
movies) because she has less enjoyment watching movies alone than she does playing
video games with Raina. Similarly for Raina, her payoffs are reduced if she switches to
watching movies, so Raina will also not change her decision. Since neither player will
change their decision, this is a Nash equilibrium. A similar argument can also be made
to show that both Jenny & Raina watching movies is also a Nash equilibrium.
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Problem 5:

Japan and Luxembourg are allies who frequently trade with each other. Luxembourg realizes
that Japanese anime imports are hurting local animation studios, and thus plans on
imposing tariffs on Japanese imports. In retaliation, Japan is considering altogether
stopping anime exports to Luxembourg. Below is the payoff matrix for this situation.

(a) (2 points) What is Japan’s best action/strategy and why?

(b) (2 points) What is Luxembourg’s best action/strategy and why?

(c) (1 points) What is the outcome of the game if both players play optimally?

(a) Japan’s best action is to export . This is because regardless of whether Luxem-

bourg tariffs, Japan will earn more money when they export.

(b) Luxembourg’s best action is to impose tariffs . This is because regardless of whether

Japan exports, Luxembourg will earn more money when they impose tariffs.

(c) Japan will export and Luxembourg will impose tariffs . This is a direct result of

the findings of part a and b above.

Problem 6: Consider the game Rock, Paper, Scissors where both players choose either
“Rock,” “Paper,” or “Scissors.” “Rock” beats “Scissors,” “Scissors” beats “Paper,” and
“Paper” beats “Rock.” Suppose winning the game gives a player an outcome of 1, losing
gives an outcome of −1, and tying gives an outcome of 0.

(a) (2 points) Draw the payoff matrix for Rock, Paper, Scissors between player A and
player B.

(b) (2 points) Is there a Nash Equilibrium in Rock, Paper, Scissors? Explain why or
why not.

(c) (3 points) Now, suppose player A and B are tired of playing classic Rock, Paper,
Scissors, so they decide to add a fourth option, “Sword.” “Sword” beats “Scissors” and
“Paper” but loses to “Rock.” Draw the payoff matrix for this modified game, Rock,
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Paper, Scissors, and Sword.

(d) (4 points) Is the game Rock, Paper, Scissors, and Sword different from regular Rock,
Paper, Scissors? If so, why, and if not, why not? Remember that it is assumed that all
players make optimal decisions.

(a) Refer to the image below.

(b) No, there is no Nash Equilibrium . This is because for each of the 9 squares

in the payoff matrix, one of the two players (or both for the squares with ties)
can improve their outcome by changing their strategy. Thus, there is no Nash
Equilibrium.

(c) Refer to the image below.

(d) No, Rock, Paper, Scissors, Sword is the SAME GAME as Rock, Paper, Scissors .

This is because if both players play optimally, then no player will ever choose
to play “Scissors”, because “Sword” is a strictly better option. However, since
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“Sword” still ties against itself and loses to rock, if we imagine removing the
“Scissors” row and column from the payoff matrix above, we are left with exactly
the same matrix as shown in part a in the original game.

Problem 7: Tom and Jerry both own businesses selling offbrand Gucci sunglasses on the
internet. Since rare items sell for more, both Tom and Jerry know that their sunglasses
will sell for $(12 − x) each, where x is the total number of sunglasses that are being
sold by Tom and Jerry combined. For example, if Tom and Jerry both sell 1 pair of
sunglasses, each will sell for $(12− 2) = $10. In order to avoid complicated game theory
decision making, Tom and Jerry agree with each other to sell 3 pairs of sunglasses each
(i.e. they will sell a total of 6 pairs combined).

(a) (2 points) If both Tom and Jerry keep their agreement, how much money will each
make and why?

(b) (3 points) If Tom decides to secretly break the agreement and start selling 4 pairs
of sunglasses, how will Tom’s income change and why? What about Jerry’s income?
Assume that Jerry sticks to the original agreement.

(c) (3 points) Does Tom have an incentive to break the agreement and start selling
more sunglasses? Why or why not?

(d) (3 points) What is the Nash Equilibrium of this situation? Give your answer in
terms of the number of sunglasses Tom and Jerry will sell.

(a) Tom and Jerry will both earn $18, or they will earn a total of $36 . If Tom and

Jerry both keep their agreement, then they will each sell 3 pairs of sunglasses,
and each pair will sell for $(12− 6) = $6. Thus, they will both earn 3× $6 = $18.

(b) Tom will earn $20 and Jerry will earn $15 . If Tom sells one more pair of sun-

glasses, then now each pair will sell for $(12 − 7) = $5. Thus, Tom will earn
4 × $5 = $20 and Jerry will earn 3 × $5 = $15.

(c) Yes, because Tom earns more money by breaking the agreement . As shown in

part c above, Tom increases his earnings by $2 when he breaks the agreement, so
he is incentivized to break it.

(d) Three possible answers, full credit was given was any of them:

• Tom sells 4 sunglasses and Jerry sells 4 sunglasses .

• Tom sells 5 sunglasses and Jerry sells 3 sunglasses .

• Tom sells 3 sunglasses and Jerry sells 5 sunglasses .
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When both Tom and Jerry are selling 4 sunglasses, each pair will sell for $(12 −
8) = $4 and thus Tom and Jerry will both earn 4 × $4 = $16. Now, if either
person sells one more pair of sunglasses, each pair will sell for $(12 − 9) = $3,
and they will make 5 × $3 = $15. Similarly, if either person sells one less pair of
sunglasses, each pair will sell for $(12−7) = $5, and they will make 3×$5 = $15.
Thus, since neither Tom nor Jerry make more money by changing the number of
sunglasses they sell, this is a Nash Equilibrium. A similar argument can be made
to see why the other two possible answers are also equilibria.
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4 Optimal Strategy

Now that we’ve familiarized ourselves with the concept of common knowledge and practiced
some structured game theory questions involving Nash Equilibrium, let’s tackle a few more
general game theory problems!

Problem 8: (4 points) In the game SPLIT , two players take turns choosing an existing
stack of Legos and splitting it into two unequal stacks. The last player that is able to
make a move wins.

For example, if the game starts with a single stack of 4 Legos, then the first player’s only
valid move is to split the single stack into a stack of 3 Legos and another stack of 1 Lego,
and then the second player’s only valid move is to split the stack of 3 Legos into a stack
of 1 and another stack of 2. Then, the first player cannot make a valid move, because
the only remaining stacks have either 1 or 2 Legos, none of which can be split into two
unequal stacks. Thus, player two will always win.

If we instead start the game of SPLIT with a single stack of 7 Legos, can either player
guarantee that they will always win? If either player (or both) can, describe their strategy
and why it guarantees a win.

The second player can always win with correct play . In order to show this, we will

split into cases based on what the first player does on their first turn. Also recall that
as stated in the problem, if the game ever reaches a point where the only stack that
can be split is a single stack of 4 Legos, then the play who must first split the 4 Lego
stack always loses.

• One possible move that first player can make is to split the 7 Lego stack into a
stack 6 and a stack of 1. From this point, if the second player then splits the
stack of 6 into a stack of 4 and a stack of 2, then the second player guarantees
that they win. This is because the first player can now only split the stack of 4,
and as mentioned above, this means they will lose.

• Another possible move that the first player can make is to split the 7 Lego stack
into a stack of 5 and a stack of 2. From this point, if the second player splits
the stack of 5 into a stack of 4 and a stack of 1, then they again guarantee a win
because the only stack left that can be split is the stack of 4.

• The final possible move that the first player can make is to split the 7 Lego stack
into a stack of 4 and a stack of 3. From this point, if the secon player splits the
stack of 3 into a stack of 2 and a stack of 1, then they again guarantee a win
because the only stack left that can be split is the stack of 4.

Problem 9: In the game of 71! (Note that 61! was used in the US version, but all the
solutions below are still applicable), two players take turns saying an integer between 1
and 4 inclusive, and adding whatever integer they say to a shared counter (that starts
at 0). The player who first has to say a number that causes the counter to reach 71 or
higher loses.
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(a) (1 points) Suppose Sid is playing Tyler in 71!, and Sid is going first. Sid doesn’t
know the strategy to the game, so he always says 4. If Tyler also decides to always say
one specific number, what number(s) could he say to guarantee he wins?

(b) (3 points) Sid realizes that if he always says 4, Tyler can win every game. Thus,
he decides to change his strategy to instead randomly pick 1, 2, 3, or 4 each turn. If
Sid is still going first, what strategy could Tyler employ to guarantee he always wins?
Your answer should specify what number Tyler should respond with regardless of which
number Sid randomly picks each turn.

(c) (3 points) With your help, Tyler is still winning every game against Sid. Thus,
Sid decides to change up the game so that instead of the game ending when the counter
reaches 71, the game will instead end when the counter reaches a random positive integer
limit that Sid chooses before each game. Will the strategy you specified in part (b)
above still work regardless of which counter limit Sid chooses? If yes, explain why. If no,
describe which specific counter limits would allow Tyler to still guarantee a win.

(a) Tyler can say 1 or 3 . If Tyler says 1, then every time both Sid and Tyler take

a turn, 4 + 1 = 5 will be added to the counter. Thus, the counter will eventually
reach 70 after Tyler’s turn, and after this Sid will lose the game. A similar
argument can be made to see why 3 also guarantees a win for Tyler but 2 and 4
do not.

(b) If Sid chooses x, then Tyler should always respond with 5 − x . If Tyler employs

this strategy, then every time both Sid and Tyler take a turn, x + 5 − x = 5 will
always be added to the counter, and as a result the counter will eventually reach
70 after Tyler’s turn, and after this Sid will lose the game.

Also, note that the reason Tyler must choose 5 − x instead of say, 7 − x (which
at first glance may seem like an option since 7 is also a factor of 70) is because it
is not always possible for Tyler to respond with 7 − x. For example, if Sid picks
1, then Tyler cannot pick 7 − 1 = 6 because 6 is not a possible option.

(c) Tyler can only guarantee a win if the counter limit c is such that c ≡ 1 mod 5 .

This result is a direct result of what was already discussed in the answer to part
b above. Since the possible moves for each player are only 1, 2, 3, and 4, Tyler
can only guarantee that the sum of his move and Sid’s move each turn is 5. Thus,
Tyler can only guarantee a win if the counter is one more than a multiple of 5,
because only in those situations Tyler’s strategy of saying 5− x always cause the
counter to reach the multiple of 5 one less than c.
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5 Artificial Intelligence in Games

Today, the best players in many complex and historically significant games are not humans,
but computers. But how do computer algorithms know how to “play” a game? Unlike
humans, algorithms can’t easily be told to follow complex strategies.

Instead, algorithms oftentimes “play” games by considering every possible action it and
other players can make for several turns or until the end of the game in order to determine
which sequence of actions results in the optimal, or best possible outcome.

Definition 5.1. A game is said to be solved if the outcome of the game can always be
determined regardless of the current state of the game, assuming both players play perfectly.

Example 5.1. Simpler games such as Tic-Tac-Toe are solved. In the case of Tic-Tac-Toe,
we know that the total number of possible games is at most 9!, since on the first turn the first
player has 9 possible places to place their piece, then the next player has 8 possible places
left to place their piece, and so on. Since 9! ≈ 300, 000, a computer is easily able to store
every possible game.

Problem 10: (3 points) In the game of Battle!, a standard 52-card deck plus the 2 Jokers is
randomly shuffled and then evenly dealt between two players. Both players then choose
one card in their hand to play (playing a card removes it from a player’s hand), and
whoever plays the larger card wins a point (suppose 2 is the smallest card, Joker is the
largest card, and Ace is the second largest card). The players repeat this process until
both have exhausted their deck, and then the player with the most points wins. How
many ways can this game play out? Leave your answer as an unsimplified expression
(ex. 9!). (

54

27

)
× 27! × 27! OR 54!

There are a total of 54 cards in the deck. First, notice that there are
(
54
27

)
ways of

splitting the cards into two equal halves to distribute to the two players at the beginning
of the game. Then, each play can play their 27 cards in 27! ways, for a total of(
54
27

)
× 27! × 27! ways the game can be played out. Notice that this expression is

equivalent to 54!.

Problem 11: (3 points) In the game of Guess the Number, Freddy secretly chooses a
number between 1 and 20 inclusive without revealing it, and then asks Jethro and Insoo
to guess his number. Next, Jethro guesses a number between 1 and 20, and finally Insoo
also guesses a number between 1 and 20 with the condition that the positive difference
between his guess and Jethro’s guess must be at least 5. Whoever’s guess is closest to
Freddy’s number wins. How many ways can this game play out? Give an exact number
as your answer.

4800

Freddy can choose any number from 1 to 20 inclusive with no restrictions. However,
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we must be slightly more careful when counting the number of ways Jethro and Insoo
can choose numbers due to the restriction that their guess must be at least 5 apart.
Thus, we find that:

• If Jethro picks 1 or 20, then Insoo has 15 possible choices to pick from.

• If Jethro picks 2 or 19, then Insoo has 14 possible choices to pick from.

• If Jethro picks 3 or 18, then Insoo has 13 possible choices to pick from.

• If Jethro picks 4 or 17, then Insoo has 12 possible choices to pick from.

• If Jethro picks any number from 5 to 16 inclusive, then Insoo has 11 choices to
pick from.

Thus, we find that the number of ways Jethro & Insoo can pick their numbers is:

2 × 15 + 2 × 14 + 2 × 13 + 2 × 12 + 12 × 11 = 240

Thus, the answer is 20 × 240 = 4800.

Unfortunately, not every game can be solved by listing out every possible way the game
can be played. For example, current estimates of the complexity of Chess state that there
are at least 10120 possible ways a full game of Chess can be played, an unfathomably large
number (for reference, there are only 1080 atoms in the universe). Despite this, starting
in the 2000s, computer algorithms were easily able to defeat the best human players, and
today top Chess players regularly use computer analysis to improve.

How are computers able to play Chess at such a high level despite the complexity of the
game? The answer lies in a concept called pruning. Unfortunately, we won’t have time to
discuss pruning in-depth in this test, but the central idea behind pruning is that computers
do not actually check every single possible way a game can play out. Instead they “prune”
or remove cases where it is highly unlikely that the optimal solution will be found.

Example 5.2. When Chess algorithms try to find the best move, they may oftentimes prune
cases where a Queen (commonly thought of as the strongest piece in Chess) is sacrificed for
no gain, as it is almost never the case that the optimal sequence of moves involves such a
sacrifice.

Problem 12: (2 points) Do you think that artificial intelligence algorithms that use pruning
will always be able to find the optimal strategy? Why or why not?

No, because they might accidentally prune the optimal strategy.

We only accepted “no” as an answer. While pruning algorithms are usually successfully
in greatly improving the efficiency of algorithms while still playing well, there is always a
risk that the true optimal solution will be accidentally pruned, especially in complicated
games like Chess where it is unclear whether a move that looks bad in the short-run
can end up being important many moves down the line.
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Problem 13: (2 points) In example 5.1 above, it was stated that there are ≈ 9! ways
the game Tic-Tac-Toe can be played out. Suppose a computer algorithm was trying
to determine the optimal solution to Tic-Tac-Toe but pruned out every game in which
the first player places their first piece in the top row of the board. What is a new
approximation for the number of ways Tic-Tac-Toe can be played out? Leave your
answer as an unsimplified expression (ex. 9!).

6 × 8!

is the most reasonable solution. This is because if we cannot place a piece on the
top row for the first turn, then there are only 6 options for the first move. However,
after the first move, the game is played as normal, so after the first move there are
approximately 8! ways to play the rest of the game.
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